CENTER FOR INNOVATIVE TECHNOLOGIES MASTER COURSE DOCUMENT

CET 125 Statics and Strength of Materials for CET

Course Description: A course on applying physical principles to solve problems of equilibrium and behavior in civil engineering structures. Topics include: force resultants, equilibrium, truss analysis, direct stress, bending stress, beam behavior, and combined stress.

Prerequisites(s): MAT 121 Corequisite(s): None Lecture Hours: 3 Lab Hours: 3 Credit Hours: 4 Lab Fee: \$105 Supplemental Fee: \$0 Purpose: ☐ Transfer Assurance Guide Course (TAG) ☐ Transfer Module Course (TM) Course Format: Lec/Lab Grading: A/B/C/D/F/I Delivery Method: X Web □ Hybrid X Classroom Semesters Offered:

□ Fall X Spring X Summer **Course Primary Text:** Edition: 2nd Applied Statics and Strength of Materials Author(s): Thomas Burns Publisher: Cengage Supplemental Materials: None **Course Outcomes:** ABET (B), Reinforced: - Students reinforce an ability to apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require limited

Course Topics:

3

5

Week 1

ABET (C), Introduced: - Students are introduced to standard tests and measurements, and how to

ABET (E), Reinforced: - Students reinforce an ability to identify, analyze, and solve narrowly

ABET (H), Reinforced: - Students reinforce an understanding of and a commitment to address

application of principles but extensive practical knowledge.

professional and ethical responsibilities, including a respect for diversity.

ACCE 8, Reinforced: Discuss basic principles of ethics in the construction industry.

ACCE 12, Introduced and Reinforced: Recognize the basic principles of structural design.

to conduct, analyze and interpret experiments.

defined engineering technology problems.

CENTER FOR INNOVATIVE TECHNOLOGIES MASTER COURSE DOCUMENT

Week 2	Forces and Resultants Continued (Chapter 2)
Week 3	Equilibrium (Chapter 3)
Week 4	Equilibrium (Chapter 3), Test 1
Week 5	Truss Analysis (Chapter 4)
Week 6	Truss Analysis (Chapter 4), Test 2
Week 7	Centroids (Chapter 6)
Week 8	Moment of Inertia (Chapter 7), Test 3
Week 9	Stress, Strain, Modulus of Elasticity (Chapter 8)
Week 10	Thermal Deformation, (Chapter 10)
Week 11	Test 4, Shear and Moment Diagrams (Chapter 11)
Week 12	Shear and Moment Diagrams (Chapter 11), Bending Stress
Week 13	Beams, Bending Stress, Shear Stress, Deflection (Chapter 12)
Week 14	Beam Deflection, Combined Stress (Chapter 13)
Week 15	Combined Stress, Test 5

Methods of Evaluation/Assessment

5 Tests = 75%	
2 Lab reports = 10%	
1 Course Project = 15%	

Date Completed: 8-21-13 Updated: September 16, 2016 Updated: February 17, 2018 Updated: March 15, 2019, Carol Morman Course Keeper: T. Burns