CENTER FOR INNOVATIVE TECHNOLOGIES MASTER COURSE DOCUMENT

CMT 220 Analytical Chemistry

Course Description: A course on quantitative and qualitative chemical analysis with emphasis on wet chemical techniques. Topics include: sample preparation; volumetric, gravimetric, electrochemical, and separation methods; and statistical treatment of data.

Prerequisites(s): CMT 112, C	CHE 122, and CHE	132 Core	equisite(s):	No corequisite	
Lecture Hours: 3	Lab Hours: 3		Credit Hours: 4		
Lab Fee: 105	Supplemental Fe	e: 0	Purpose:		
☐ Transfer Assurance Guide Course (TAG)		☐ Transfer Module (Transfer Module Course (TM)		
Course Format: Lec/Lab		Grading: A/B/C/I	Grading: A/B/C/D/F/I		
Delivery Method: □ Web □ Hybrid ☒ Classroom					
Semesters Offered: ⊠ Fall	□ Spring □ S	Summer			
Course Primary Text:					
Title: Quantitative Chemical Analysis		Edition: 9 th			
Author(s): Harris					
Publisher: Freeman					
Supplemental Materials:					
Program Outcomes:					
1 Students will determine a	nd demonstrate sa	fe lab practices and u	ise of lab saf	ety resources.	
Students will utilize basic laboratory equipment and techniques.					
3 Students will effectively utilize lab tools in accurate /precise solution preparation.					
4 Students will apply a varie	ety of lab calculation	ns common in chemi	cal analysis.		
5 Students will be able to co	ompile and evaluate	e experimental data.			
Course Outcomes:					

Understand safe lab practices and use of lab safety resources

CENTER FOR INNOVATIVE TECHNOLOGIES MASTER COURSE DOCUMENT

2	Understand role of quality assurance in analytical labs
3	Be familiar with properties of common lab reagents
4	Be proficient in the use of key chemical information references/resources
5	Effectively utilize lab tools in accurate/precise solution preparation
6	Be proficient in variety of lab calculations common in analytical analyses
7	Understand types and sources of experimental error
8	Successfully apply common statistical methods to analytical data
9	Be able to use various types of calibration methods for analyte quantitation
10	Understand and apply knowledge of chemical equilibria to analytical methods

11	Thoroughly understand and successfully perform various types of titrations
12	Demonstrate knowledge of gravimetric, precipitation, and combustion analyses
13	Demonstrate knowledge of common electro-analytical methods
14	Understand theory of analytical separations and common applications
15	Have working knowledge of UV/visible spectroscopy

Course Topics:

Week 1	Introduction to analytical chemistry, industrial safety, and quality assurance
Week 2	Laboratory measurements and calculations
Week 3	Experimental error
Week 4	Statistics
Week 5	Calibration techniques
Week 6	Chemical equilibrium
Week 7	Acid-base equilibrium
Week 8	Acid-base equilibrium
Week 9	Electro-analytical techniques
Week 10	Gravimetric, precipitation, and combustion analyses
Week 11	Analytical separations theory
Week 12	Separation techniques
Week 13	Introduction to spectroscopy
Week 14	Introduction to instrumental analysis
Week 15	Review, lab practical exam, and final exam

Methods of Evaluation/Assessment

CENTER FOR INNOVATIVE TECHNOLOGIES MASTER COURSE DOCUMENT

List assessment activities (e.g. quizzes, discussions, essays, research papers, debates, oral presentations, exams):

□ Formative:

Homework assignments
Quizzes
Lab reports
Final exam
Final lab practical exam

Course Keeper: Ann Fallon Date Completed: 7/14/20