EET 101 Electronic Fundamentals 1

Course Description: A course on DC and AC electrical systems for non-electrical engineering technology programs. Topics include: voltage, current, and power distribution for resistive, capacitive and inductive circuits; transformer properties, and three phase analysis.

Prerequisites(s): AFL 085 and AFM 095, or appropriate **Corequisite(s):** No corequisite placement test score

Lecture Hours: 2	Lab Hours: 3			Credit Hours: 3
Lab Fee: 105	Supplemental Fee: 0		0	Purpose:
☐ Transfer Assurance Guide C	ourse (TAG)		Transfer Module (Course (TM)
Course Format: Lec/Lab			Grading: A/B/C/I	D/F/I
Delivery Method: Web	□ Hybrid →	(Clas	sroom	
Semesters Offered: x Fall	x Spring	k Sum	mer	

Course Primary Texts:

Title: Grob's Basic Electronics	Edition: 12th
Author(s): Schultz, M.E.	

Supplemental Materials:

Soldering Kit: http://www.electronickitsbychaneyelectronics.com/RACING-ROBOT-LEARN-TO-SOLDER-KIT/productinfo/C6927/

Course Outcomes:

Students should demonstrate the understanding of scientific and engineering notation, proper engineering prefixes, and the concept of order of magnitude in technical calculations.

Students should be able to explain the fundamental concepts of voltage and current, how these concepts relate to electron flow, and how material properties correlate to electrical resistance.

Students should illustrate the proper use of measurement equipment such as power supplies and multimeters and demonstrate the relationship between voltage, current, resistance, and power in the laboratory setting.

Students should be able to calculate key parameters, such as resistance, supply power, and total circuit current for series, parallel, and series-parallel circuits.

Students should understand the behavior of alternating current in resistive, capacitive and inductive networks, including resonant RLC circuits.

Students should differentiate the critical differences between capacitive and inductive circuits within DC circuits as compared to AC circuits.
 Students should be able to explain the major types of transformer systems and understand the

Course Topics:

fundamentals of three-phase power systems.

Topic 1	Introduction to Powers of 10	3 Hours
. 26.6 .	Quantities and Units	33413
	Units of Measurement	
	Scientific Notation	
	Engineering Notation	
	Metric Prefixes,	
	Metric Unit Conversions.	
Topic 2	Electricity	3 Hours
•	Atomic Structure	
	Electrical Charge	
	Current	
	Voltage	
	Resistance	
	The Electric Circuit	
Topic 3	Resistors	3 Hours
	Resistor types	
	Color Coding	
	Variable Resistors	
	Power Ratings	
Topic 4	Ohm's Law	3 Hours
	Ohm's Law	
	The Relationship of Current, Voltage and Resistance	
	Calculating Current, Voltage and Resistance	
	Energy and Power	
	Power in an Electric Circuit	
	Energy Conversion	
	Efficiency	
Topic 5	Series Circuits	5 Hours
	Series Circuit Structure	
	Total Current	
	Total Resistance	
	Total Voltage	
	Total Equivalency	
	Application of Ohm's Law	
	Voltage Sources in Series	
	Kirchhoff's Voltage Law	
	Voltage Divider Theorem	
	Power in Series Circuits	
	Ground	
	Effects of Open and Short Circuits	
Topic 6	Parallel Circuits	5 Hours
	Parallel Circuits Structure	
	Total Current	

	Total Resistance	
	Total Voltage	
	Total Equivalency	
	Application of Ohm's Law	
	Voltage Sources in Parallel	
	Kirchhoff's Current Law	
	Current Sources	
	Current Divider Theorem	
	Power in Parallel Circuits	
	Effects of Open and Short Circuits	
Topic 7	Alternating Voltage and Current	3 Hours
	Sine Wave Generation	
	Voltage and Current Values for a Sine Wave	
	Period and Frequency.	
Topic 8	Inductance and Capacitance	3 Hours
	Energy Storage	
	Calculations of inductance and capacitance	
	Series/Parallel equivalent circuits	
	Reactance	
Topic 9	Transformers	4 Hours
	Step up/Step down calculations	
	Impedance transformation	
	Wye-Delta configurations	
Topic 10	Three Phase Power Systems	3 Hours
	Basic voltage and current configurations	
	Wye-Delta configurations	
	Basic line/load calculations	

Labs:

Lab Topic	Exp.#	Description	Hours
1	#1	Introduction to the Electrical Laboratory: Instrumentation used in the lab Safety principles and practices Reading analog VOM and digital DMM Bread-boarding. Resistor values	3 Hours
2	#2	Ohm's law Measuring voltage and current in series circuit. Determining unknown quantities using Ohm's Law.	3 Hours
3	#3	Series Circuits Construct series circuits from schematic diagrams Calculation and measurement of voltage and current values Calculation of power values Basic trouble shooting techniques Introduction to open and shorted elements Calculation and measurement of voltages and currents Verification of Ohm's Law	3 Hours

4	#4	Parallel Circuits: Construct parallel circuits from schematic diagrams Calculation and measurement of voltage and current values Calculation of power values Basic trouble shooting techniques	3 Hours
5	#5	Series-Parallel Circuits Measurement of voltage and current values across all branches and nodes. Calculation of power values	3 Hours
6	#6	Electromagnetism and Motor Project Demonstrate working simple electric motor. Build coil and electromagnet.	3 Hours
7	#7	 Introduction to the Digital Oscilloscope Learning the controls. Calibration. Basic D.C./A.C. voltage measurements. Multisim Oscilloscope and Graphing Functions 	3 Hours
8	#8	Soldering Project Build battery powered race car.	6 hours
9	#9	RL and RC Circuits Look at voltage and current relations in AC circuits Directly measure phase delay on the oscilloscope	3 hours
10	#10	Transformers and 3 phase Build simple transformers Introduction to 3-phase system laboratory	3 hours
Metho	ds of Ev	aluation/Assessment	
x Form List ass Test 1 Test 2 Final Ex Quizzes Labora	sessment a	□ Summative activities (e.g. quizzes, discussions, essays, research papers, debates, oral presentations, exams) 12% Total Semester Grade 12% Total Semester Grade 18% Total Semester Grade 9% Total Semester Grade 40% Total Semester Grade):
Quizze	s:	Quiz every Friday 15 – 20 min. in length.	
Test 1:		Week of Will notify of exact day one week in advance. Exam will cover first (5) weeks of course material. Test will be 1 hour in length. Closed book. A one page of notes 8.5" x 11".	Allowed
Test 2:		Week of Will notify of exact day one week in advance. Exam will cover second (5) weeks of course material. Test will be 1 hour in length. Closed book one page of notes 8.5" x 11".	c. Allowed

Test 3: Week of ______. Will notify of exact day one week in advance.

Exam will cover third (5) weeks of course material. Test will be 1 hour in length. Closed book. Allowed

one pages of notes 8.5" x 11".

Lab Reports: Written lab reports will be due one week after initial lab session.

All calculations for lab experiments must be completed before entering lab. Failure to complete lab

calculations will result in expulsion from lab.

Make Up Policy: No make up for missed quizzes, tests, exams and labs.

Turn-in Policy: Assignments, lab reports, work sheets etc. will **not** be accepted late.

All material must be dated or substantial points will be deducted.

Grading Policy: Grading for all course material will be based completeness and accuracy of solution. Show all work in a

relatively neat and orderly manner so partial credit can be awarded. If you give an incorrect solution with no work shown, you leave no choice but to deduct the total points for the problem at hand.

Don't let the calculator do the thinking for you.

Course Keeper: Ralph Whaley Date Completed: April 18, 2019