EET 131 Circuit Analysis 1

Course Description: A course on DC electric circuits. Topics include: current, voltage, resistance, and power; laws applied to series, parallel, and series-parallel circuits; Thevenin's, Superposition, and Norton's theorems; steady state and transient behavior of capacitive and inductive devices; and magnetic properties.

Prerequisites(s): MAT 121 (minimum grade C) or appropriate **Corequisite(s):** No corequisite placement test score

Lecture Hours: 3	Lab Hours: 2			Credit Hour	s: 4
Lab Fee: 70	Supplemental F	ee:	25	Purpose:	
	ourse (TAG)		Transfer Module	Course (TM)	
Course Format: Lec/Lab			Grading: A/B/C/I	D/F/I	
Delivery Method: □ Web	□ Hybrid x	Clas	sroom		
Semesters Offered: x Fall	x Spring x	Sum	nmer		
Course Primary Text:					
Title: Principles Of Electric Circui	its Conventional C	urrer	nt Flow 9 th Ed.		Edition: 9 th
Author(s): T. L Floyd					

Supplemental Materials:

Experiments in Basic Circuits, David M. Buchla, 9th Ed., Pearson/Prentice Hall
Seven segment display kit

Course Outcomes:

Publisher: Pearson

1	Students should demonstrate the understanding of scientific and engineering notation, proper engineering prefixes, and the concept of order of magnitude in technical calculations.
2	Students should be able to explain the fundamental concepts of voltage and current, how these concepts relate to electron flow, and how material properties correlate to electrical resistance.
3	Students should illustrate the proper use of measurement equipment such as power supplies and multimeters and demonstrate the relationship between voltage, current, resistance, and power in the laboratory setting.
4	Students should be able to calculate key parameters, such as resistance, supply power, and total circuit current for series, parallel, and series-parallel circuits.
5	Students should be able to apply key circuit network theorems, such as superposition, Thevenin, and Norton's theorems to fundamental DC circuits.

Students should differentiate the critical differences between capacitive and inductive circuits within DC circuits as compared to AC circuits.

Course Topics:

Topic 1	Introduction, Quantitie	es and Units 2 Hours
•	, -	1. Units of Measure.
		2. Metric Prefixes.
		3. Scientific Notation.
		4. Engineering Notation.
		5. Conversions within and between systems of units.
		6. Electrical quantities and symbols.
Tonio 2	Valtage and Comment	2 Hours
Topic 2	Voltage and Current	1. Atomic Structure.
		2. Charge (Coulombs Law).
		3. Energy.
		4. Mass.
		5. Time.
		6. Voltage.
		7. Current.
Topic 3	Resistance	4 Hours
		1. Resistance of circular wires.
		2. Wire tables.
		3. Temperature effects.
		4. Conductance.
		5. Conductive materials.
		6. Insulators.
Topic 4	Ohm's Law	2 Hours
•		1. Ohm's Law.
		2. Relationship of voltage, current and resistance.
		3. Calculating voltage, current and resistance.
		4. Basic circuit structures.
Topic 5	Energy and Power	4 Hours
i opio o	Energy and rower	1. Time rate of doing work (J/s, units of measure).
		2. Energy conversions (heat, light, mechanical).
		3. Power in electric circuits (E x I).
		4. Power equations derived using Ohm's Law (I ² R, E ² /R).
		5. Design safety factor.
		6. Basic motor circuits (horsepower conversion).
		7. Efficiency (P _{out} /P _{in}).
		8. Residential, commercial and industrial energy consumption (KWH).
Topic 6	Series Circuits	4 Hours
		1. Circuit structure.
		2. Current in a series circuit.
		3. Total resistance.
		4. Total equivalent circuit.
		5. Voltage distribution across series elements.
		6. Application of Ohm's Law.
		7. Kirchhoff's Voltage Law.
		7. Kirchhoff's Voltage Law.8. Series aiding and series opposing voltage sources.
		7. Kirchhoff's Voltage Law.

		12. Power in series circuits.
		13. Effects of open and short circuits.
		14. Practical applications of series circuits.
Topic 7	Parallel Circuits	3Hours
		1. Circuit structure.
		2. Current in a parallel circuit.
		3. Voltage distribution across parallel elements.
		4. Methods of calculating total resistance.
		a. Conductance Method.
		b. Product/Sum Method.
		c. Method of Like Resistance.
		5. Total equivalent circuit.
		6. Application of Ohm's Law.
		7. Kirchhoff's Current Law.
		8. Current Divider Rule.
		9. Voltage sources in parallel.
		10. Current sources in parallel.
		11. Power in parallel circuits.
		12. Effects of open and short circuits.
		13. Practical applications of parallel circuits.
opic 8	Series-Parallel Circuits	6 Hours
		1. Identifying series-parallel relationships.
		2. Circuit reduction to total equivalency.
		3. Analysis of current, voltage and power distribution.
		4. Unloaded and Loaded Voltage Divider networks (analysis and design).
		5. Ladder Networks analysis and design (R/2R).
	77.	6. Wheatstone Bridge network analysis and design (balanced and unbalanced).
Горіс 9	Network Theorems/Met	
		1. Ideal and non-ideal voltage sources.
		2. Ideal and non-ideal current sources.
		3. Source conversions.
		4. Superposition Theorem.
		a. Analysis with multiple voltage sources.
		b. Analysis with multiple current sources.
		c. Analysis with multiple mixed sources.
		5. Thevenin's Theorem.
		a. Determining Thevenin's equivalent resistance (R _{TH}).
		b. Determining Thevenin's equivalent voltage (V _{TH}).
		c. Thevenin's equivalent circuit.
		d. Analysis of single source networks.
		e. Analysis of multi-source networks.
		6. Norton's Theorem.
		a. Determining Norton's equivalent resistance (R _N).
		b. Determining Norton's equivalent current (I_N) .
		c. Norton's equivalent circuit.
		d. Analysis of single source networks.
		e. Analysis of multi-source networks.
		7. Maximum Power Transfer Theorem.
		a. Application of theorem.
		b. Calculation of load values for Max. Power.
		8. Delta to Wye and Wye to Delta Conversions for resistive networks.
		9. Methods of Analysis
		a. Branch Method.
		b. Mesh Method.
		c. Nodal Method.

Topic 10	D. C. Capacitive Networks	6 Hours
1001010	1. Capacitor	
	2. Charge sto	
		g capacitance (electrical).
		= Q/V.
	4. Energy sto	-
		$r = (V^2C)/2$.
		g capacitance (physical).
		ate area.
		ielectric thickness.
		ermittivity of air (εo).
		elative Permittivity of dielectric material (εr).
		electric strength.
	6. Capacitors	
		etermining total capacitance.
		alculating charge.
		etermining voltage distribution.
	7. Capacitors	<u> </u>
		etermining total capacitance.
		alculating charge.
		etermining voltage distribution.
		e conditions for the Resistive/Capacitive Network.
		nalysis of R-C circuits at steady state.
		Transient Resistive/Capacitive Networks.
	•	ne Time Constant ($\tau = R \times C$).
		niversal time constant chart.
	c. In	troduction to logarithms.
		nalysis of charging R-C networks.
		i. $v_C = Es(1-\varepsilon^{-t/\tau})$.
		ii. $v_R = Es(\varepsilon^{-t/\tau})$.
		iii. $i_C = Es/R_T (\varepsilon^{-t/\tau})$.
		iv. Solving for time (t).
		v. Response to D.C. pulse.
	e. A	nalysis of discharging R-C networks.
		i. $v_C = V_F (\varepsilon^{-t/\tau})$.
		ii. $v_R = V_F (\varepsilon^{-t/\tau})$.
		iii. $i_C = V_F/R_T (\varepsilon^{-t/\tau})$.
		iv. Solving for time (t).
	f. Tr	ansient Analysis using Superposition and Thevenin's Theorems.
		etermining instantaneous capacitor current.
		a. $i = C (dv/dt)$.
	h. P	ractical applications of capacitive networks.
Topic 11	Magnetism and Electromagnetism	2 Hours
	1. The magne	
	2. Magnetic f	
	3. Flux densi	
	4. Hysteresis	
	5. Magnetic r	
	6. Electromag	
		ght Hand Rule.
		ermeability.
		eluctance.
		agneto motive Force.
		ne electromagnetic.
	7. Electromag	gnetic devices.

	a. Solenoids.
	b. Relays.
	c. Reed switches.
	8. Electromagnetic induction.
	a. Faraday's Law.
	b. Lenz's Law.
Topic 12	D.C. Inductive Networks 4 Hours
	1. The basic inductor.
	2. Unit of measure.
	3. Calculating self induced voltage (electrical/magnetic).
	a. Lenz's Law $v_{ind} = L (di/dt)$.
	b. Faraday's Law $v_{ind} = N (d\phi/dt)$.
	4. Energy storage.
	a. $W = I^2L/2$.
	5. Calculating inductance (physical).
	a. Number of turns.
	b. Core area.
	c. Permeability of air (μο).
	d. Relative Permeability of core material (μr).
	e. Core length.
	f. Winding resistance.
	g. Winding capacitance.
	6. Inductor types.
	a. Air core.
	b. Iron core.
	c. Ferrite core.
	d. Symbols.
	7. Inductors in series.
	a. Determining total Inductance.
	b. Calculating current.
	c. Determining voltage distribution.
	8. Inductors in parallel.
	a. Determining total inductance.
	b. Calculating current.
	c. Determining voltage distribution.
	9. Steady state conditions for the Resistive/Inductive Network.
	a. Analysis of R-L circuits at steady state.
	10. Analysis of Transient Resistive/Inductive Networks.
	a. The Time Constant ($\tau = L/R$).
	b. Universal time constant chart.
	c. Analysis of charging R-L networks.
	i. $v_L = Es(\varepsilon^{-t/\tau})$
	ii. $v_R = E_S (1 - \varepsilon^{-t/\tau})$
	iii. $i_L = E_S/R_T (1-\varepsilon^{-t/\tau})$
	iv. Solving for time (t)
	v. Response to D.C. pulse
	f. Transient Analysis using Superposition and Thevenin's Theorems.
	g. Effect of rapid decay of inductive current.
	a. Inductive kick voltage
	b. Lenz's Law $v_{ind} = L (di/dt)$
	h. Practical applications of inductive networks.

Test 1	15% Total Semester Grade
Test 2	15% Total Semester Grade
Final Exam (Lecture)	20% Total Semester Grade
Quizzes	15% Total Semester Grade
Homework	5% Total Semester Grade
Laboratory	15% Total Semester Grade
Final Exam (Laboratory)	15% Total Semester Grade
Quizzes:	Quiz every Friday 15 – 20 min. in length.
Test 1:	Week of Will notify of exact day one week in advance.
	Exam will cover first (5) weeks of course material. Test will be 2 hours in length. Closed book.
Test 2:	Exam will cover first (5) weeks of course material. Test will be 2 hours

Course Keeper: Ron Singleton Date Completed: April 16, 2019