CENTER FOR INNOVATIVE TECHNOLOGIES MASTER COURSE DOCUMENT

MET 150 Statics and Strength of Materials for MET

Course Description: A course on analyzing forces that occur within machine and structural elements subjected to various types of loads. Topics include: vector panalysis, free body diagrams, individual stresses, and combined stresses.

Pre	erequisites(s): MAT 121 o	r MAT 125		Core	equisite(s):	No corequisite
Lec	cture Hours: 2	Lab Hours: 3		Credit Hours: 3		
Lab	Fee: 105	Supplemental F	ee:	0	Purpose:	
	Transfer Assurance Guide (Course (TAG)		Transfer Module	Course (TM)	
Co	urse Format: Lec/Lab			Grading: A/B/C/	D/F/I	
Del	livery Method:	□ Hybrid 🛛	☑ CI	assroom		
Sei	mesters Offered: Fall	Spring	∃ Sι	ımmer		
Cou	rse Primary Text:					
Title: Applied Statics & Strength of Materials Edition:					Edition: 6th	
Aut	thor(s): George Limbrunn	er				1
Pul	olisher: Prentice Hall					
Sup	plemental Materials:					
No	ne					
Cou	rse Outcomes:					
1	The student will be able to apply knowledge, techniques, skills and modern tools of the discipline to narrowly defined engineering technology problems.					
2	The student will have the ability to identify, analyze, and solve narrowly defined engineering technology problems.					
3	The student will demonstr	ate a commitmen	t to	quality, timeliness,	and continuo	ous improvement.

CENTER FOR INNOVATIVE TECHNOLOGIES MASTER COURSE DOCUMENT

Course Topics:

Week 1	The Mathematics of Statics, Calculations and Numerical Accuracy, Calculations and					
	Dimensional Analysis, SI Units for Statics and Strength of Materials, Forces and the Effects					
	of Forces, Characteristics of a Force, Units of a Force, Types and Occurrence of Forces,					
	Scalar and Vector Quantities, The Principle of Transmissibility Types of Force Systems,					
	Orthogonal Concurrent Forces: Resultants and Components.					
Week 2	Resultant of Two Concurrent Forces, Resultant of Three or More Concurrent Forces,					
	Moment of a Force, The Principle of Moments: Varignon's Theorem, Resultants of Parallel					
	Force Systems, Couples, Resultants of Non-concurrent Force Systems					
Week 3	Conditions of Equilibrium, The Free-Body Diagram, Equilibrium of Concurrent Force					
	Systems, Equilibrium of Parallel Force Systems, Equilibrium of Non-concurrent Force					
	Systems					
Week 4	Trusses, Forces in Members of Trusses, The Method of Joints, The Method of Sections					
Week 5	Friction Theory, Angle of Friction, Friction Applications					
Week 6	Center of Gravity, Centroids and Centroidal Axes, Centroids and Centroidal Axes of					
	Composite Areas					
Week 7	Moment of Inertia, The Transfer Formula, Moment of Inertia of Composite Area, Radius					
	of Gyration, Polar Moment of Inertia					
Week 8	Tensile and Compressive Stresses, Shear Stresses, Tensile and Compressive Strain and					
	Deformation, Shear Strain, The Relation between Stress and Strain (Hooke's Law					
Week 9	Poisson's Ratio, Thermal Effects, Members Composed of Two or More Components,					
	Stress Concentration, Stresses on Inclined Planes, Shear Stresses on Mutually					
	Perpendicular Planes, Tension and Compression Caused by Shear					
Week 10	Members in Torsion, Torsional Shear Stress, Angle of Twist, Transmission of Power by a					
	Shaft					
Week 11	Types of Beams and Supports. Types of Loads on Beams, Beam Reactions, Shear Force					
	and Bending Moment					
Week 12	Shear Diagrams, Moment Diagrams, Sections of Maximum Moment					

CENTER FOR INNOVATIVE TECHNOLOGIES MASTER COURSE DOCUMENT

Week 13	Tensile and Compressive Stresses Due to Bending, The Flexure Formula, Computation of
	Bending Stresses, Shear Stresses, The General Shear Formula, Shear Stresses in Structural
	Members, Beam Analysis
Week 14	Combined Stresses
Week 15	Review and Final Exam

Methods of Evaluation/Assessment

Wethous of Evaluation/Assessment					
□ Formative:	□ Summative				
List assessment activities (e.g. qu	uizzes, discussions, essays, research papers, debates, oral presentations, exams):				
Weekly Quizzes					
Online Quizzes					
Exams					
Homework Assignments					

Course Keeper: Abbey Yee Date Completed: 8/11/18